Continuing its leading research work in conjunction with the University of Eastern Finland, DuPontNutrition and Health recently released the findings of a research study showing that natural Betafin betaine, a part of the company’s Daniscoportfolio, enhanced the metabolism in fat (adipose) tissue and reduced inflammation in mice being fed a high-fat Western diet.
For over two decades, DuPontscientists have been at the forefront of studying the physiological effects of betaine and developing products that relieve metabolic stress situations in the body, including those caused by consumption of a high-fat diet.
Betaine, a N-trimethylated amino acid, is produced in various plant species as a response to, for instance, environmental stresses such as dehydration. It functions as an essential nutrient for methylation, a key process in metabolism, and is one of the most powerful organic osmolytes found in living organisms (helping cells to adapt to osmotic stresses such as dehydration or fluid excess).
The favourable metabolic changes brought about by betaine feeding included increasing fat tissue carnitine, which may prevent lipid accumulation in fat tissues, and therefore, offers potential benefits in reducing obesity.
“Our previous in-vitro adipose tissue experiments indicated that betaine reduces inflammation caused by hypoxia, and in the current study, we were able to see the same response in the in-vivo obesity model,” said Kaisa Airaksinen, senior scientist, DuPont Nutrition and Health.
“This study exemplifies DuPont’s commitment to long-term science behind our products,” said the company’s Kirsti Tiihonen.
“Betaine is an example of the research we have been performing in Kantvik, Finland, for over 20 years using our own pre-clinical modelling expertise and the collaboration with external partners in the areas of omics techniques as well as clinical trials,” she added.
Among the study’s other achievements was the comparison of adipose tissue gene expression and non-targeted metabolite profiles.
“While this study was conducted on animals, the metabolic effects are presumably in line with what could be seen in humans,” said Kati Hanhineva of the University of Eastern Finland, adding, “These kinds of study approaches can give more understanding on the metabolic mode of action of products, and how they can impact the health of the human body.”